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A Generalized Split- Window Algorithm 
for Retrieving Land-Surface Temperature from Space 

Zhengming Wan and Jeff Dozier, Associate Member, IEEE 

Abstract- We propose a generalized split-window method for 
retrieving land-surface temperature (LST) from AVHRR and 
MODIS data. Accurate radiative transfer simulations show that 
the coefficients in the split-window algorithm for LST must vary 
with the viewing angle, if we are to achieve a LST accuracy of 
about 1 K for the whole scan swath range (1t5.5" from nadir) 
and for the ranges of surface temperature and atmospheric 
conditions over land, which are much wider than those over 
oceans. We obtain these coefficients from regression analysis of 
radiative transfer simulations, and we analyze sensitivity and 
error over wide ranges of surface temperature and emissivity 
and atmospheric water vapor abundance and temperature. Sim- 
ulations show that when atmospheric water vapor increases and 
viewing angle is larger than 45", it is necessary to optimize 
the split-window method by separating the ranges of the at- 
mospheric water vapor, lower boundary temperature, and the 
surface temperature into tractable subranges. The atmospheric 
lower boundary temperature and (vertical) column water vapor 
values retrieved from HIRS/2 or MODIS atmospheric sounding 
channels can be used to determine the range for the optimum 
coefficients of the split-window method. This new algorithm not 
only retrieves land-surface temperature more accurately, but is 
also less sensitive to uncertainty in emissivity and to instrument 
quantization error. 

I. INTRODUCTION 

AND-SURFACE temperature (LST) is one of the key 
parameters in the physics of land-surface processes on 

regional and global scales, combining the results of all surface- 
atmosphere interactions and energy fluxes between the atmos- 
phere and the ground [l], [2]. Therefore, it is required for a 
wide variety of climatic, hydrological, ecological, and biogeo- 
chemical studies [3], [4]. For example, canopy temperature can 
be used to estimate sensible heat flux [5]; soil-surface temper- 
ature can be used to estimate sensible and latent heat fluxes 
[6]; and satellite-measured surface temperature can be used 
to improve models and methods for evaluating land-surface 
energy balance [7]. Global climate model (GCM) simulations 
indicate that stronger summer monsoons are associated with 
higher land temperatures [SI. The canopy temperature may 
be also used to evaluate water requirements of wheat [9] 
and to determine frosts in orange groves [lo]. In order to 
understand the entire Earth system better on the global scale, 
the Earth Observing System (EOS) will provide surface kinetic 
temperatures at specified accuracies of 0.3 K for oceans 
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and 1 K over land. The international Tropical Ocean Global 
Atmosphere (TOGA) program has specified that sea surface 
temperature (SST) should be accurate to 0.3 K for global 
numerical models of climate. 

A. Infrared Measurement of Surface Temperature 

During the past decade, significant progress has been made 
in estimation of land-surface emissivity and temperature from 
airborne thermal infrared data. Kahle et al. [ll] developed 
a technique to estimate the surface temperature based on an 
assumed constant emissivity in one channel and previously 
determined atmospheric parameters and then estimate the 
emissivity in other channels [12]. Other techniques, such as 
thermal log residuals and alpha residuals, have been recently 
developed to extract emissivity information from multispectral 
thermal infrared data [13]. 

Two types of methods have been developed to estimate 
LST from space: the single infrared channel method and the 
split-window method. The single-channel method requires a 
good radiative transfer model and atmospheric profiles, which 
must be given by either satellite soundings or conventional 
radiosonde [14], [15]. 

The split-window method corrects for atmospheric effects 
based on the differential absorption in adjacent infrared bands 
[16]-[24]. Li and Becker [25] proposed a method to estimate 
both land-surface emissivity and LST using pairs of dayhight 
co-registered AVHRR images. They use a temperature- 
independent spectral index (TISI) in thermal infrared bands 
and assume knowledge of surface TIR BRDF (bidirectional 
reflectance distribution function) and atmospheric profiles. 

Recent progress in SST algorithms [26]-[28] also provides 
useful information for the development of LST algorithms. 
Sobrino et al. [28] show that including column water vapor in 
the split-window algorithm improves SST accuracy. 

Because of the difficulties in correcting for atmospheric 
absorption, atmospheric emission, and surface emissivity, 
the development of accurate LST algorithms is not easy. 
The accuracy of atmospheric corrections is limited by 
radiative transfer methods, uncertainties in atmospheric 
molecular absorption coefficients (especially water vapor) and 
aerosol absorption/scattering coefficients, and uncertainties 
in atmospheric profiles. Atmospheric transmittancehadiance 
codes LOWTRAN6 [29], LOWTRAN7 [30], and MODTRAN 
[31] have been widely used in development of SST and 
LST algorithms. A common method used for calculation of 
radiative flux in these codes is the two-stream approximation. 
A single scattering approximation is used in LOWTRAN6, 
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while a three-term K-distribution multiple scattering parame- 
terization is used in LOWTRAN7, and a multiple scattering 
approximation without K-distribution is used in MODTRAN. 
The newest version of MODTRAN uses the discrete-ordinates 
method [32]. Other different approximations in these codes 
include the Curtis-Godson approximation, Beer’s law to 
calculate optical depth (although atmospheric transmission 
does not obey Beer’s law), and omitting absorption overlap. 
Quantitative comparisons between these codes indicate 
that the approximations are accurate within 0.5-2% in the 
3 .44 .1  pm, and 8-13 pm atmospheric windows. Moreover, 
TIR band transmittance may differ by 6% within these 
windows and by more than 30% near the edges of these 
windows due to different molecular band absorption models 
used in LOWTRAN7 and MODTRAN [33]. A review 
for measurements of water vapor absorption in the 8-13 
pm atmospheric window over the past 20 years reveals 
considerable variation in its magnitude [34]. The accuracy of 
water vapor continuum absorption in five of the measurements 
reviewed is about lo%, adequate experimental measurements 
are lacking at temperatures below 280 K. Recent theoretical 
studies [35], [36] on water vapor continuum absorption reveal 
that the empirical model [37], widely used in transmission 
codes, fails to satisfy the principle of detailed balance 
that governs the emission and absorption processes. These 
theoretical studies have also led to significant progress in 
understanding the physical mechanisms and in the ability to 
predict their magnitude and temperature dependence. Barton 
[38] explored the possibility to derive water vapor absorption 
coefficients from satellite TIR data. 

B. Microwave Measurement of Surjace Temperature 

Thermal infrared remote sensing can retrieve LST only in 
clear-sky conditions. Microwave techniques have the great 
advantage of having an all-weather capability. McFarland et al. 
[39] derived surface temperature over crophange, moist soils, 
and dry soils areas in the Central Plains of the United States 
from the MDSP Special Sensor Microwavehmager data. A 
regression analysis between all SSM/I channels and minimum 
screen air temperatures (representing the surface temperatures) 
showed correlations with rms errors of about 3°C. They also 
found that snow-surface temperature retrieval is very difficult, 
if not impossible, because snow’s emissivity varies with depth, 
density, and grain size, and that land surfaces with large 
areas of water present, such as lakes and flooded soils, also 
present problems because of the integrated influence of the 
much lower brightness temperatures and higher polarization 
differences for water. The presence of falling rain masks 
the radiation emitted from the surface. Microwave remote 
sensing has been better used to retrieve soil moisture [40]-[42] 
because of the large contrast between the dielectric constant 
of water and that of dry soil. In the microwave range, soil 
emissivities vary from 0.6 for wet soil ( ~ 3 0 %  volumetric soil 
moisture) to 0.9 for dry soil (4%) [43]. Although satellite- 
borne microwave radiometers have been providing information 
about atmospheric and oceanic parameters for several years, 
they have not provided land parameters, with the exception 

of snow monitoring, because 1) the spatial resolution of 
the satellite radiometers flown to date is more compatible 
with the dimensions associated with the spatial variations of 
most atmospheric and oceanic parameters than with those of 
most land parameters and 2) the mechanisms responsible for 
microwave emission from land surfaces and volumes are not 
well understood, in part because land targets generally have 
complicated dielectric and geometric properties. 

C. MODIS (Moderate Resolution Imaging Spectroradiometer) 

MODIS is an EOS instrument that will serve as the keystone 
[44] for global studies of atmosphere [45], land [4], and ocean 
processes. It scans A55” from nadir in 36 bands, with bands 
1-19 and band 26 in the visible and near infrared range, and the 
remaining bands in the thermal infrared from 3-15 pm. It will 
provide images of daylight reflection and dayhight emission 
of the Earth every 1-2 days, with continuous duty cycle. It 
uses 12 bits for quantization in all bands. The thermal infrared 
bands have an IFOV (instantaneous field-of-view) of about 1 
km at nadir. MODIS will view cold space and a full-aperture 
blackbody before and after viewing the Earth scene in order 
to achieve calibration accuracy of better than 1% absolute for 
thermal infrared bands. MODIS is particularly useful because 
of its global coverage, radiometric resolution and dynamic 
ranges, and accurate calibration in multiple thermal infrared 
bands designed for retrievals of SST, LST and atmospheric 
properties. Specifically, bands 3-7, 13, and 16-19 will be 
used to classify land-cover to infer emissivities, band 26 will 
detect cirrus clouds, and thermal infrared bands 20, 22, 23, 
29, 31, and 32 correct for atmospheric effects and retrieve 
surface emissivity and temperature. The atmospheric sounding 
channels of MODIS retrieve atmospheric temperature and 
water vapor profiles. Multiple bands in the mid-infrared range 
will provide, for the first time, corrections for solar radiation 
in daytime LST estimations using mid-infrared data. Table I 
shows the wavelength ranges for AVHRR and MODIS. 

11. BACKGROUND ON LAND-SURFACE EMISSIVITIES 
For an uniform surface at surface temperature Ts, we can 

define its band average emissivity by spectral emissivity &(A) 
and the spectral response function of the sensor in this band, 
*(A), in a way similar to the definition of spectral emissivity: 

l; Q(X)&(X)B(X, T s )  dX 
(1) 

- 
E =  lr *(X)B(X, Ts)  dX 

This band-averaged emissivity is a function of the surface 
temperature. XI and A2 are lower and upper boundaries of the 
band, and B is the Planck function. In Earth’s environment, 
this temperature-dependence is usually very small. In an 
extreme example of coarse sands [46], the spectral emissivity 
increases from 0.667 at 3.5 pm to 0.907 at 4.25 pm in 
the medium wavelength range where AVHRR channel 3 
is located. Its band-average emissivity changes only 0.004 
as the temperature changes from 240 to 320 K. Therefore, 
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the Planck function term B(X, T )  in (1) can be omitted 
without introducing any significant error, and the band-average 
emissivity can be calculated from spectral emissivity values. 

How to define the band-average emissivity for mixed pixels 
is not so obvious. If a pixel consists of two land covers, one 
with emissivity ~1 and surface temperature 271, the other with 

and T2, and proportions are p l  and pa,  there are two ways 
to define its band-average emissivity. The first one simply 
extends (1) to the mixed pixel. The average emissivity in 
band i will be 

F i  = - 

Q ( X ) l p i & i ( X )  B(X, Ti) + ~ 2 & 2 ( X )  B(X, Tz)] dX 

X j i ,  upper) 

where X(z, lower) and X ( i ,  upper) are lower and upper bound- 
aries of band i ,  and the denominator defines the numerical 
value of the effective Planck function of the mixed pixel as 
if its components are all blackbodies. The second way is to 
define a temperature-independent band-average emissivity as 
long as other physical properties of the surface do not change 
as its temperature changes 

upper) .I’ @ ( X ) h . l ( X )  + P 2 E Z ( X ) ]  

’ (3 )  
- A(%, lower) 
E ,  = 

upper) 
!€“(A) dX s X(z, lower) 

Correspondingly, the numerical value of the effective Planck 
function of the mixed pixel in band i is 
- 
B,[T,(i)] = 

1 upper) 
@ ( A ) ~ I E I ( A )  B(X, TI) + pz.z(X) B(A, T2)1 dX 

X ( t ,  lower) 
A(%, upper) .i,l @(A) bl&l(A) +P2&2(41 dX 
t ,  lower) 

(4) 

where T, ( 2 )  is the effective radiometric surface temperature 
in band i. 

We show some numerical results for mixed pixels with two 
components, sandy soil and grass, in Table 11, where the band- 
average emissivity defined by (2) is in the first part and that 
defined by (3) in the second part. The spectral emissivities 
of these two materials are calculated from the reflectance 
spectra labeled as soil sample 0145 and grass sample indiang in 
Salisbury and D’Aria’s paper [47], where spectra were plotted 
only in the 8-14 pm range. The spectral response functions 
for NOAA-11 AVHRR bands 3, 4, and 5, and the specified 
response functions for MODIS bands 29, 31, and 32 are used 
in the calculations. We considered 6 different cases: a) only 
one component of sandy soil at 300 K; b) only one component 
of grass at 300 K; c) equal proportions of sandy soil and grass 
at 300 K; d) and e) equal proportions of sandy soil and grass at 
different temperatures; and f) equal proportions of grass at 300 

and 285 K. In real situations, the temperature of vegetation 
canopies is usually lower than soil temperature and surface 
temperature under shadows is lower than in sunshine areas. 
The temperature difference is typically 10-20 K. Numerical 
simulations indicate that the band-average emissivity defined 
by (2) works well only in isothermal cases A, B, and C, 
and in single material case, F. For case F, the same material 
with proportions at different temperatures, the two average 
emissivities defined by (2) and (3) are almost the same. In 
the general mixing cases D and E, emissivity varies not only 
with the proportions but also with temperatures TI and T2. 

The band emissivity defined by (3) is more accurate because 
it does not vary with subpixel temperatures. However, even 
using (3) to define the band emissivity, the effective band 
temperature defined by (4) varies with band because the Planck 
function increases with temperature at a higher rate at shorter 
wavelength and the mixing effect also varies with band. The 
effective band temperature in AVHRR band 3 may be different 
from the values in the split-window bands by up to 0.5 K, and 
the band temperature difference for MODIS band 29 (8.4-8.7 
pm) may be up to 0.35 K in the extreme case D. However, 
the band temperature difference between split-window bands 
is very small. It is less than 0.1 K for AVHRR bands 4 and 
5.  It does not exceed 0.04 K for MODIS bands 31 and 32 
because these two bands are narrower. This value is less than 
the noise-equivalent temperature difference (NEAT), 0.05 K, 
specified for MODIS bands 31 and 32. This means that the 
thermal emittance from mixed pixels can be expressed by a 
temperature-independent band emissivity defined by (3) and 
a single surface radiometric temperature only in the split- 
window spectral region. Special care should be taken for the 
mixing effect in shorter-wavelength regions. 

From the point of view of satellite remote sensing, the 
land surface is the top layer of the interface between the 
lower boundary of the atmosphere and the solid Earth. In the 
thermal infrared region, this top layer is a few millimeters 
thick. The Earth’s land surface consists of evergreen forest 
and shrubs, deciduous forest and shrubs, crop and grass lands, 
inland water bodies, wetlands, ice or snow, barren and urban 
areas, bare soil, exposed bedrock, volcanic rocks, sands, shale, 
and sediments. One of the major difficulties in development 
of LST algorithms is the considerable spectral variation in 
emissivities for these different materials. For many of them, 
emissivities have been measured only for the spectrally inte- 
grated range from 8-14 pm [47]-[50]. Emissivity may also 
vary with the viewing angle [51]-[53], an effect that is more 
important over land than over water because the combination 
of surface slope and sensor scan angle routinely results in 
local viewing angles near 70”. In laboratory measurements 
of bare soils, Labed and Stoll [52] showed that this angular 
effect is smaller at wavelengths 10.6 and 12.0 pm than at 
3.7 pm. Oblique viewing results in reducing of the signature, 
the spectral features being essentially unchanged. At viewing 
angle 60°, this angular effect does not exceed 1.5% for sand 
and silty materials but it is about 5% for agricultural soils. 
Soil emissivity may vary with soil particle size [54], and 
atmospheric effects may cause the emissivity spectra derived 
from field measurement and airborne sensor data to differ 

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 16, 2008 at 17:48 from IEEE Xplore.  Restrictions apply.



WAN AND DOZIER. GENERALIZED SPLIT-WINDOW ALGORITHM 

~ 

895 

TABLE I 
THE WAVELENGTH RANGES FOR NOAA-11 AVHRR AND MODIS BANDS. THE RANGE IS DEFINED 

BY ITS LOWER AND UPPER EDGES WHERE THE RESPONSE IS HALF OF THE PEAK RESPONSE 

AVHRR band 
no. lower band edge upper band edge 

(F) (PI 
1 0.572 0.697 
2 0.716 0.986 

3 3.54 3.94 

4 10.32 1 1.32 
5 11.41 12.38 

from the spectra derived from laboratory data [55]. Accurate 
determination of surface emissivity requires information about 
the surface BRDF. The conventional method of measuring 
surface emissivity with an integrating sphere assumes that 
the reference surface and a sample surface have a similar 
BRDF. Otherwise, the uncertainty in measured emissivity may 
be f5% in cases of mixed diffuse and nondiffuse samples 
and [56] if an appropriate baffle is not configurated in the 
intergrating sphere. In vegetation, the emitted radiance also 
varies with the viewing angle because of temperature structure 
in the vegetation canopy [57]. 

Despite all these variations, spectral emissivity character- 
istics for terrestrial land covers are relatively stable in the 
wavelength range 10.5-12.5 pm, where AVHRR bands 4 
and 5 and MODIS bands 31 and 32 are located. Moreover, 
spectral contrast in surface emissivities usually decreases with 
aggregation as spatial scale increases. Salisbury and D’ Aria 
[47] published spectral reflectance data of 79 pure terrestrial 
materials including igneous, metamorphic, and sedimentary 

MODIS band 
no. lower band edge upper band edge 

(PI (PI 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
31 
32 
33 
34 
35 
36 

0.620 
0.841 
0.459 
0.545 
1.230 
1.628 
2.105 
0.405 
0.438 
0.483 
0.526 
0.546 
0.662 
0.673 
0.743 
0.862 
0.890 
0.931 
0.91 5 
3.660 
3.929 
3.929 
4.020 
4.433 
4.482 
1.360 
6.535 
7.1 75 
8.400 
10.780 
11.770 
13.185 
13.485 
13.785 
14.085 

0.670 
0.876 
0.479 
0.565 
1.250 
1.652 
2.155 
0.420 
0.448 
0.493 
0.536 
0.556 
0.672 
0.683 
0.753 
0.877 
0.920 
0.941 
0.965 
3.840 
3.989 
3.989 
4.060 
4.498 
4.549 
1.390 
6.895 
7.475 
8.700 
11.280 
12.270 
13.485 
13.785 
14.085 
14.385 

rocks, varnished rock surfaces, lichen-covered sandstone, soil 
samples, green foliage, senescent foliage, ice, and water sur- 
faces with suspended quartz sediment and oil slicks. The 
average emissivities in NOAA-1 1 AVHRR bands 4 and 5 
calculated from these reflectance spectra are shown in Fig. 1. 

In Fig. 1, the solid line represents the grey body relation 
4 = q and the upper and lower dashed lines represent 
Eg - 4 = 0.023 and - 4 = -0.015. We can gain 
the following insights into the band-average emissivities of 
terrestrial materials in the available database: 1) all 4 and 
Eg are larger than 0.825; 2) a general relation -0.015 5 
Eg - Eq 5 0.023 holds for all samples except fresh rocks, 
smooth distilled water ice, and senescent beech foliage; and 
3 )  4 and are larger than 0.91 for all samples except 
fresh rock and senescent leaves. Salisbury and D’Aria [47] 
also point out that multiple scattering within the vegetation 
canopy will reduce spectral contrast and that typical trees, 
bushes, and grass have emissivities quite close to 1. Field 
measurements of prairie grasses have shown a spectral emis- 
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pixel mixing parameters AVHRR band 
Case g1Ts(3) glTs(4) GlTs(5) 

TI ~2 T2 3.54-3.94 10.32-1 1.32 10.41 -1 2.38 
Pm P Pm 

TABLE I1 
THE BAND EMISSIVITIES AND EFFECTIVE TEMPERATURES OF A PIXEL MIXED WITH T W O  COMPONENTS (SANDY SOIL AND GRASS) IN NOAA-11 AVHRR AND EOS 

MODIS band 
g1Ts(29) GlTs(37) &1Ts(32) 

Pm Pm P 

8.4-8.7 10.78-1 1.28 1 1.77-1 2.27 

1.0 300°K 
sandy soil 

0.0 300°K 
sandy soil 

0.5 300°K 
sandy soil 

0.5 300°K 
sandy soil 

0.5 300°K 
sandy soil 

0.5 300°K 
grass 

0.0 300°K 
grass 

1.0 300°K 
grass 

0.5 300°K 
grass 

0.5 275°K 
grass 

0.5 285OK 
grass 

0.5 285°K 
grass 

A 1.0 300°K 0.0 300°K 
sandy soil grass 

B 0.0 300°K 1.0 300°K 
sandy soil grass 

C 0.5 300°K 0.5 300°K 
sandy soil grass 

D 0.5 300°K 0.5 275OK 
sandy soil grass 

E 0.5 300°K 0.5 285°K 
sandy soil grass 

F 0.5 300°K 0.5 285OK 
grass grass 

band emissivities defined by (2) 

0.720 0.953 0.970 
300.00 OK 300.00 OK 300.00 "K 

0.967 0.962 0.976 
300.00 O K  300.00 O K  300.00 O K  

0.844 0.958 0.973 
300.00 OK 300.00 "K 300.00 OK 

0.779 0.957 0.972 
290.43 OK 288.24 OK 288.1 4 OK 

0.804 0.957 0.973 
293.55 OK 292.76 OK 292.72 "K 

0.967 0.962 0.976 
293.55 OK 292.76 "K 292.72 OK 

band emissivities defined by (3) 

0.725 0.953 0.970 
299.85 OK 300.00 OK 299.99 "K 

0.968 0.962 0.976 
299.98 "K 300.00 OK 300.00 OK 

0.846 0.958 0.973 
299.93 OK 300.00 OK 299.99 OK 

0.846 0.958 0.973 
288.62 OK 288.1 8 O K  288.09 O K  

0.846 0.958 0.973 
292.38 OK 292.72 OK 292.69 OK 

0.968 0.962 0.976 
293.53 OK 292.75 OK 292.72 OK 

0.861 
300.00 OK 

0.977 
300.00 OK 

0.91 9 
300.00 O K  

0.904 
288.55 OK 

0.91 0 
292.86 OK 

0.977 
292.86 OK 

0.955 
300.00 OK 

0.966 
300.00 OK 

0.960 
300.00 OK 

0.960 
288.21 OK 

0.960 
292.75 OK 

0.966 
292.75 OK 

0.976 
300.00 OK 

0.978 
300.00 OK 

0.977 
300.00 OK 

0.977 
288.1 2 O K  

0.977 
292.71 OK 

0.978 
292.71 OK 

0.861 
300.01 OK 

0.977 
300.00 OK 

0.91 9 
300.00 OK 

0.91 9 
287.77 OK 

0.91 9 
292.39 OK 

0.977 
292.86 OK 

0.955 
300.00 OK 

0.966 
300.00 O K  

0.961 
300.00 OK 

0.961 
288.1 5 OK 

0.961 
292.71 OK 

0.966 
292.75 OK 

0.976 
299.99 OK 

0.978 
300.00 OK 

0.977 
300.00 OK 

0.977 
288.1 1 OK 

0.977 
292.71 OK 

0.978 
292.71 OK 

sivity of 0.99 Ifr 0.01 [58]. From these measurements, a 
constant emissivity approximation of 0.96-0.98 in AVHRR 
band 5 appears quite good for all natural land covers except 
exposed rocks and sands. Although more field measurements 
are needed to confirm this approximation, it indicates that the 
band emissivities in AVHRR bands 4 and 5 and MODIS bands 
31 and 32 are relatively stable and known within about 0.01 
for dense evergreen canopies, lake surfaces, icelsnow covers, 
and most soils. Because their band emissivities are close to the 
emissivities of water surfaces, the effect of rain is negligible 
for these land covers. 

111. RADIATIVE TRANSFER SIMULATIONS 

A. Theoretical Method 

A fundamental theoretical description for the LST algorithm 
development [ 181 is summarized briefly here. Emitted spectral 
radiance L at wavelength X from a surface at thermodynamic 
temperature T, is given by multiplying the Planck function by 
spectral emissivity &(A) 

L(X, T )  = &(X)B(X, Ts).  (5) 
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Fig. 1. 
AVHRR bands 4 and 5. 

Band averaged emissivities of terrestrial materials for NOAA-11 

In general, azimuthally dependent radiance in an absorbing, 
emitting, and scattering layer is governed by the monochro- 
matic radiative transfer equation 

+ L(7,  6) = J ( 7 ,  6) d ~ ( r ,  d) ' d r  

where 7 is optical depth, and L(r ,  6) is the radiance at level 7 

along direction 6, which is composed of zenith angle arccos ,LL 

and azimuth 4. The spectral designation is omitted from the 
equation for simplicity. 

The source function J is 

P(T,  6; ~ ' ) L ( T ,  6) do' + Q(T,  6) (7) 
+ w  

J ( 7 ,  n) = - 

where P(T,  6; 6') is the scattering phase function. The Q 
term in (7) represents internal sources. By separating direct 
from diffuse radiation, it is convenient to consider the radiation 
scattered from the direct beam or the specularly reflected direct 
beam as caused by some internal pseudo-source. Then the total 
internal source is 

Q(7, 6) = Qt(7, 6) + Q s ( 7 ,  6) + Q s p ( 7 ,  6) (8) 

where Qt is the thermal source, and Qs and Qsp are the direct 
and specular pseudo-sources. 

By applying the interaction principle [59] and dou- 
bling/adding method [60], a matrix form of this integro- 
differential radiative transfer equation can be applied to a 
vertically inhomogeneous, multilayer atmosphere [61]. The 
top and bottom boundary conditions that need to be satisfied 
are that Ll(0) must be specified (usually zero) and 

L ~ ( Q )  = R ~ L L ( ~ ~ )  + ZB(T,) + p0 E" e-70/~ofr(,LLo). (9) 

Radiances Lif are vectors of m x n elements on a discrete 
angular space composed of m zenith and n azimuth angles. R, 
is the surface diffuse reflection matrix, T, is the temperature 

of the surface. fr(pO) is the surface BRDF vector to the direct 
beam, and 2 is the emissivity vector. 

The directional emissivity and BRDF fT  are coupled by 
Kirchhoff's law: 

P27r P 1  

Numerical results obtained by using the doubling/adding 
method have been compared with and validated by results 
obtained by using discrete-ordinate method [32], [62]. The 
doubling/adding method is used in our radiative transfer simu- 
lations due to its advantages in easy implementation of surface 
interfaces, such as the air-water interface and interfaces for 
specular reflectance or BRDF reflectance, and in efficiently 
getting solutions for multiple boundary conditions. 

As described thus far, the model is for the monochromatic 
case only. To make the model work for the atmosphere, 
we need to know the atmospheric optical properties. Among 
them the most important are optical thickness 70, single 
scattering albedo IZI, and the scattering phase function P, which 
depend on atmospheric profiles (temperature, pressure, water 
vapor density, ozone density, and the aerosol density and 
distribution). LOWTRAN7 [30] and MODTRAN [3 11 provide 
absorption band absorption coefficients for calculations of 
atmospheric molecular transmission functions averaged within 
wavenumber intervals 5 and 1 cm-l, respectively. This av- 
eraging causes violation of the Lambert-Bouguer-Beer law 
because of the complexity of molecular band absorption even 
in a narrow wavenumber interval. A solution to this problem 
is to expand radiative transmission functions calculated from 
LOWTRAN or MODTRAN by using exponential-sum fitting 
[63]. The monochromatic radiative transfer model is applied 
separately to each term in the exponential-sum expansion, and 
the results are then summed. By solving the radiative transfer 
equation over the whole wavelength range of a thermal band 
of a satellite sensor, we get the angular distribution of average 
spectral radiance: 

- s,: S(X)LT(X,  0) dX 

LT = (1 1) 

where LT(X, 0) is the vector of upward spectral radiances 
at the top of the atmosphere and !€J is the sensor response 
function, for the wavelength band whose lower and upper 
boundaries are [XI, A,]. 

From the theoretical point of view, the success of the 
LST algorithm depends on 1) accurately dealing with the 
atmospheric effects; 2) accurately dealing with the surface 
emissivity effects; and 3) the quality of TIR data including the 
stability of the spectral response function, signal-to-noise ratio, 
radiometric resolution, and calibration accuracy. A knowledge 
base of band emissivities of natural land covers with surface 
structures at least at small scales is urgently needed. We 
have started to measure spectral emissivities of natural land 
materials in laboratory and in fields. 
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B. Ranges of the Simulations 

It is important to make radiative transfer simulations for 
wide ranges of atmospheric and surface conditions. This is the 
advantage of the numerical experiments with computers over 
ground-based measurements that provide data coincident with 
satellite measurements for establishment of a statistical LST 
algorithm. + k d d  m [ t z ( j )  & ( j )  + t 3 ( j )  E,(.J')] 

D. Numerical Model of IR Remote Sensing 

For given conditions of atmospheric profiles and a land 
surface, the thermal infrared spectral signature measured from 
satellite-borne sensors may be expressed as [64] 

= tl (d4d B(j, Ts) 

Temperature of the Atmospheric Lower Boundary: We 
made radiative transfer simulations for 12 atmospheric 
temperature profiles, which cover the range of surface air 
temperatures (Tal,) from 256-310 K. We plan to extend 
to 240-325 K in the near future. 
Atmospheric Column Water Vapor: We scaled the water 
vapor profile from the near saturated level down to 5% 
of the saturated level for each temperature profile. The 
(vertical) column water vapor, cww,, is mainly limited 
by the atmospheric lower boundary temperature to a few 
centimeters in cold conditions and to more than 5 cm in 
warm tropical conditions. 
Surface Temperature: The land-surface temperature, T, , 
ranges from Tal, - 16 K to Tal, + 16 K. This range may 
be extended or reduced if necessary after enough global 
LST values are retrieved. This wide range will be split 
into two or more overlapped subranges, for the reason 
described later. 
Land-Sufuce Emissivities: Based on available measure- 
ment data shown in Fig. 1, we consider surface emissiv- 
ity variations of natural land covers in two subgroups, 
one defined by 0.96 5 5 1.0 and -0.025 5 G-G 5 
0.015, and another defined by 0.91 5 Eg 5 0.95 and 
-0.025 5 4 - Eg 5 0.015. The first group represents 
of band emissivity conditions for most land covers. The 
second group represents some land covers especially at 
large viewing angles. 

C. Computational Simulations 

An accurate atmospheric radiative transfer code has been 
developed for more than ten years on different workstations 
including IBM RISC/6000, and DEC 3000 Model 800 Alpha 
workstations. It takes about three hours of CPU time on 
the DEC 3000/800 Alpha workstation to make a complete 
simulation for one atmospheric temperature and water vapor 
condition over the spectral range 775-1000 cm-' with the 
spectral interval 5 cm-' for a series of surface emissiv- 
ity and temperature conditions. The exponential-sum tables 
derived from LOWTRAN-7 transmission functions are used 
in simulations to obtain results used in this paper. In the 
spectral range 775-1000 cm-l, the numerical monochromatic 
radiative transfer equation is solved 1000-8600 times in each 
spectral interval in order to deal with the molecular band 
absorptions of HzO, CO2, and 0 3 .  Recently, this radiative 
transfer code has been ported to the CRAY T3D, one of the 
High Performance Computing and Communications (HPCC) 
testbeds. The computational time decreases with the number 
of nodes at an efficiency of 90% on this parallel computing 
system. 

where ~ ( j )  is the band-average emissivity, t i ( j ) ,  i = 1, 2, 3 
are three effective band transmission functions for band j :  tl 
for surface thermal emittance, t 2  for atmospheric downward 
thermal irradiance reflected by the surface, and t 3  for solar 
irradiance reflected by the surface. La is the atmospheric 
upward thermal radiance, and L,9 is path radiance from scat- 
tering of solar radiation. In general, these three effective 
band transmission functions are different because of selective, 
wavelength-dependent molecular band absorption. In the split- 
window range, where solar radiation is negligible for the Earth 
system, (12) reduces to a simpler form 

L ( j )  = t l ( j ) E ( j )  B(j, Ts) 

+ kldd t z ( j )  E,($ + L a ( j ) .  (13) 
7l 

IV. A GENERALEED SPLIT-WINDOW LST ALGORITHM 

As mentioned early, the split-window method has been used 
by several authors for retrieving land-surface temperature. 
There are several major advantages of this method. It does 
not need profiles of atmospheric water vapor and temperature. 
It corrects for atmospheric effects based on the differential 
absorption in adjacent thermal infrared bands rather than on 
absolute atmospheric transmission in a single band so that it 
is less sensitive to the uncertainties in optical properties of the 
atmosphere. And it is simple and computationally efficient. 
We present a generalized split-window algorithm for retriev- 
ing land-surface temperature from space, specifically using 
NOAA- 11 AVHRR data and MODIS data in the following 
sections. 

A. View-Angle Dependent LST Algorithm 

for viewing angles up to 46" from nadir in form of 
Becker and Li [ 191 presented a split-window LST algorithm 

For NOAA-11 AVHRR, the coefficients are [25] 

A0 = 1.274 
I - &  A& 

P = 1 + 0.156 16 ~ - 0.482 - 
E E 2  

1--E A& M = 6.26 + 3.98 - + 38.33 - 
E E 2  

where E = 0.5(G + q) and AE = 
Since the maximum viewing angle for AVHRR sensors is 

69" from nadir, pixels with viewing angle larger than 46" 
account for nearly 30% of the total pixels, or almost 50% of 

- Eg. 
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the total coverage area within each swath. We have to develop 
a LST algorithm for the whole viewing angle range in order to 
provide a global coverage for LST. Although a LST algorithm 
in a quadratic form of combinations of ,u (cosine of the viewing 
angle) and TIR band brightness temperatures [ 181 gives better 
accuracies in cases where surface emissivity is known, it may 
be sensitive to uncertainties in emissivity and noise in band 
radiance data caused by broken clouds of subpixel size. In the 
following, we use a linear form for the Wan-Dozier [l8] LST 
algorithm 

A I  is not fixed at 1, so there is one more variable coefficient in 
this form than in Becker-Li [ 191 algorithm. We have examined 
the view-angle effect by comparing the accuracies of the 
view-angle (8,) independent algorithm with the 8,-dependent 
algorithm. In the 0, -independent algorithm, coefficients are 
obtained by regression analysis of simulation data sampled 
from the whole 8, range. In the 0,-dependent algorithm, coef- 
ficients are obtained by regression analysis of simulation data 
at individual viewing angles. In the first example, we consider 
only cold and dry atmospheric conditions. The atmospheric 
lower boundary temperature, i.e., T,,,, ranges from 256-287 
K, and atmospheric vertical column water vapor (Le., in the 
nadir direction) ranges from almost 0-2 cm. Fig. 2(a) shows 
the viewing angle dependence of the rms LST errors of the 8,- 
independent and 8,-dependent AVHRR LST algorithms for the 
first emissivity group with higher band emissivities. NOAA- 
11 AVHRR bands 4 and 5 are used in the split-window LST 
algorithms. Simulations show that the 8,-independent and 0,- 
dependent algorithms give almost the same maximum errors 
in the worst cases, which are about 3-6 times the rms errors. 
But the rms errors in the 8,-dependent algorithm (shown by 
Xs) are much smaller than in the 8,-independent algorithm 
(shown by line) at most viewing angles. Since the maximum 
error is larger than 4 K even in the 8,-dependent algorithm, 
we tried LST iterations once and twice. In the first LST 
iteration, we used LST coefficients for the two subranges of 
T, -Tair, one from -2 to +16 K, another from -16 to +2 K. 
The retrieved T, value is used to determine which subrange 
should be used in the first iteration. As shown in Fig. 2(b), 
if the surface temperature is within its upper subrange, both 
rms and maximum errors can be significantly reduced. If the 
surface temperature is within its lower subrange, no much 
improvement can be made due to the small TIR signature 
from the surface. If we divide the T, range into 4 subranges, 
the second iteration improves the LST accuracy in 3 subranges 
as shown in Fig. 2(c) and (d). In this way, the 0,-dependent 
algorithm improves the LST accuracy by a factor from 1-3. 

The 0,-dependent LST algorithm is better than the 0,- 
independent algorithms because the optical path at viewing 
angle 69" is more than twice the value at the nadir viewing 
angle. When atmospheric column water vapor is larger than 4.5 
cm, the atmospheric transmission function reduces by a factor 
of 3 from nadir to viewing angle 69" in AVHRR band 4, and 

by a factor of 4 in AVHRR band 5.  By using the 0,-dependent 
algorithm, the variation in the atmospheric column water vapor 
is separated from the optical path change with viewing angle 
so that the accuracy is improved. The 0,-dependent algorithm 
will be the only choice to retrieve LST at an accuracy of the 
1 K level for the whole scan swath range. 

B. Using Column Water Vapor in the 8,-Dependent 
LST Algorithm 

Simulations also indicate that although the rms LST error is 
smaller than 1 K, the maximum LST error exceeds 2 and 3.5 
K at viewing angles 45 and 69". We can further improve the 
LST accuracy by separating the column water vapor range into 
1 or 0.5 cm intervals. The accuracy of the 8,-independent LST 
algorithm is only slightly improved by using the column water 
vapor information, but the accuracy of the 8,-dependent LST 
algorithm could be dramatically improved. With one iteration 
of the 1 cm-interval &-dependent algorithm, the rms error does 
not exceed 0.7 K and the maximum error does not exceed 3 
K even at the largest viewing angle. If the LST algorithm 
for column water vapor intervals of 0.5 cm is used, the rms 
error does not exceed 0.5 1 K and the maximum error does not 
exceed 1.7 K, even at viewing angle 69". In the viewing angle 
range up to 45", the rms error does not exceed 0.27 K and the 
maximum error does not exceed 0.91 K. 

C. Using Atmospheric Lower Boundary Temperature 
in the 0,-Dependent LST Algorithm 

When column water vapor in a tropical atmosphere is 
greater than 4 cm, the atmospheric transmission functions in 
AVHRR bands 4 and 5 reduce to 0.22 and 0.12, respectively, 
and LST retrieval from satellite TIR data becomes difficult 
at large viewing angles. The maximum temperature deficit 
(defined as the difference between the surface temperature and 
the brightness temperature at the top of the atmosphere) in 
AVHRR band 4 may be as large as 27 K. In order to get 
a quantitative assessment of the retrieved LST accuracy, we 
developed two sets of 8,-dependent algorithms for two ranges 
of the atmospheric lower boundary temperature, one from 
300-3 10 K, the other from 300-305 K. The rms and maximum 
errors of the LST algorithm for the wider T,ir range may be 
larger than 1 K and 3.8 K, respectively. The maximum LST 
error can be reduced by 1-2 K if the 300-305 K LST algorithm 
is used. Fig. 3 shows the viewing angle dependence of the rms 
LST errors of the 8,-independent and 8,-dependent MODIS 
LST algorithms in the wide warm atmospheric conditions 
(300 K 5 Tair 5 310 K, column water vapor 3-4 cm) 
for the first emissivity group. MODIS bands 31 and 32 are 
used in the split-window LST algorithms. The Q,-dependent 
algorithm gives much smaller rms errors especially at smaller 
viewing zenith angles. Note that larger overlaps are used for 
the range of water vapor and for four subranges of the surface 
temperature as shown in Fig. 3 for a better stability of the 
algorithm. Because the nature of statistical regression method, 
the coefficients obtained in one range cannot be applied to 
outside this range. Otherwise, errors may be very large. 
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Fig. 2. Comparison between rms LST errors in @,-independent (shown by lines) and 8,-dependent (shown by points) AVHRR LST algorithms in cold, dry 
atmospheric conditions (Ts in 256-287 K and column water vapor in C-2 cm) for the higher emissivity group in ranges of T, - Tair: (a) -16 to $16 K, 
(h) -16 to $2 K and -2 to $16 K, (c) -2 to $9.5 K and $7 to +16 K, and (d) -9.5 to $2 K, and -16 to -7 K. 

D. Sensitivity Analysis 

A better LST algorithm must have the following two 
features: 1) it retrieves LST more accurately; and 2 )  it is 
less sensitive to uncertainties in our knowledge of surface 
emissivities and atmospheric properties, and to the instrument 
noise. So far we have seen that the 8,-dependent generalized 
split-window LST algorithm retrieves LST more accurately 
than @,-independent LST algorithms. Now we turn to the 
analysis of sensitivity to uncertainties in surface emissivities. 
According to (1 5), the factors on the emissivity terms (1 - E )  / E  

and & / ( E ' )  are 

and 

The view-angle dependencies of the emissivity sensitivities 
for these two algorithms in cold, dry atmospheric conditions 
(Taif 5 287.2 K and column water vapor in 0.5-1 cm) 
are shown in Fig. 4. There is no significant difference in 
maximum a values of these two LST algorithms, but the 
maximum p values are very different. Max (p) values in the 
8,-independent LST algorithm are close to 160, larger than 
twice the values in the 8,-dependent algorithm. This means 
that the 8,-independent algorithm will have a LST error up to 
1.6 Kif  there is an uncertainty of 0.01 in the value of & / ( E ' ) ) .  

We expect that this uncertainty may be around 0.005 for well 
known land surfaces. Then the 8,-independent algorithm will 
have a 0.8 K error in the whole range of viewing angle. The 
B,-dependent algorithm is much less sensitive to the value 

giving a maximum LST error around 0.37 K at the 
nadir viewing angle. 
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Fig. 3 .  Comparison between rms LST errors in 8,-independent (shown by lines) and 0,-dependent (shown by points) MODIS LST algorithms in warm, wet 
atmospheric conditions (Ts in 300-310 K and column water vapor in 3-4 cm) for the higher emissivity group in ranges of T, - Tair: (a) -t6 to +16 K, 
(b) -16 to f4.5 K and -4.5 to Jr-16 K, (c) -4.5 to $9.5 K and +4.5 to $16 K, and (d) -9.5 to +4.5 K and -16 to -4.5 K. 

Fig. 5 show the maximum emissivity sensitivities in warm, 
dry atmospheric conditions (294 K 5 Tail. 5 300 K and 
column water vapor 0.5-1 cm). The maximum /3 value in the 
0,-independent algorithm is as large as 180, its corresponding 
value in 0,-dependent algorithm is about 90 at nadir. As 
expected, all LST algorithms are more sensitive to uncertainty 
in AE in dry atmospheric conditions. This sensitivity decreases 
as atmospheric column water vapor increases, because of the 
compensative effect of the reflected downward atmospheric 
thermal infrared radiation. 

In order to investigate the sensitivity of the 8,-dependent 
LST algorithm to instrument noise, we simulate the instru- 
ment noise by synthetic quantization. The radiance values 
of AVHRR bands 4 and 5 saturate at about 325 K. The 
radiance values are expressed by a 10-b integer through 
synthetic quantization and then converted to double precision 

floating point number by multiplying the quantization step. We 
compare the rms and maximum LST errors by applying the 
same Q, -dependent algorithm to the original simulation data 
and the data after synthetic quantization. We change 10 bits 
to 9 bits and make a similar comparison. The differences in 
rms and maximum errors due to quantizations using 10 and 
9 bits are shown in Table 111, for all viewing angles up to 
69". These results show that the 8,-dependent LST algorithm 
is quite stable with 10-b AVHRR data. It will be more stable 
with 12-b MODIS data. 

V. SOME PROCEDURAL CONSIDERATIONS 

A. Programming the 0, -Dependent LST Algorithm 
Although we used a lot of computer time to establish a 

complete hierarchical 0,-dependent LST algorithm, the algo- 
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Fig. 4. The maximum sensitivities of emissivity variations in the generalized 
LST algorithms in relatively cold atmospheric conditions (T,,, 5 287 K and 
column water vapor in 0.5-1 cm). 

0.962G5 1.0 Ts - Tajr ev-dep eyindep 
-0.025<Eq-EgS 0.015 (OK) a -p  a - @  

-2to+16 ++ a -x- -u 
-16tO+2 + -e- -A- 

180 

-PlPd 
160 

I40 

120 

1W 

80 

60 

Fig. 5. The maximum sensitivities of emissivity variations in the generalized 
LST algorithms in warm atmospheric conditions (294 K 5 Tair 5 300 K 
and column water vapor in 0.5-1 cm). 

rithm itself is simple and efficient. Once it is established, 
its coefficients go into a multidimensional look-up table. As 
shown in Fig. 6, the coefficients of the LST algorithm vary 
smoothly with viewing angle. Therefore, it is enough to 
keep in the look-up table coefficients at no more than 10 
viewing angles. The coefficients at any viewing angle can 
be interpolated from these coefficients. The calibrated TIR 
band radiance data can be easily converted to band brightness 
temperature values by using look-up tables at an accuracy 
better than the sensor's NEAT. 

B. LST Production 

LST production consists of the following major steps. 
1) Cloud Masking: Cloudy pixels are detected and skipped 

in the LST production. 
2) Estimation of Atmospheric Column Water Vapor and 

Lower Boundary Temperature: The atmospheric column 
water vapor and lower boundary temperature, estimated 
from regional and seasonal climatological data, are 
useful if we separate the entire simulation space into 
broad sub ranges [65].  

The atmospheric column water vapor and lower 
boundary temperature retrieved from NOAA HIRSI2 
data may be used in the LST algorithm for AVHRR 
data. But we cannot always expect accurate column 
water vapor values for AVHRR pixels because HIRS/2 
has a coarser spatial resolution than AVHRR and the 
spatial variation in atmospheric water vapor may be 
large. 

The 8,-dependent LST algorithm proposed in this 
paper will be more suitable for MODlS data, because 
MODIS has almost all the channels in AVHRR and 
HIRS/2 at the same 1 km resolution. As shown in 
the previous section, the atmospheric column water 
vapor and lower boundary temperature retrieved 
from MODIS atmospheric sounding channels can 
significantly improve the LST accuracy, especially 
in wet atmospheric conditions and at large viewing 
angles. 

3) Land-Surface Types and Fractional Vegetation Cover: 
The VNIR channels of AVHRR and MODIS can be 
used to estimate land-surface types and to derive the 
normalized differential vegetation index (NDVI). If we 
know that the land-surface type of a pixel is fully dense 
vegetation, snowlice cover, or water surface, then the 
band emissivities in AVHRR bands 4 and 5, or similarly 
in MODIS bands 31 and 32 can be estimated through 
an a priori emissivity knowledge base such as shown 
in Fig. 1. In arid and semiarid areas, vegetation cover 
can be sparse and may also evolve rapidly with time. 
Therefore, surface emissivity may be different from one 
pixel to another. Kerr et al. [22] show that the fractional 
vegetation cover coefficient C may be estimated from 
the NDVI values with the expression 

NDVI - NDVIb, 
NDVI, - NDVIb, 

C =  

where NDVIb, is the minimum value of the NDVI for 
bare soil over the area of interest and NDVI, corre- 
sponds to the highest NDVI you can expect for a fully 
vegetated pixel (typically by the end of the rain season). 
It may be possible to estimate band emissivities of bare 
soils based on soil types from image classification (and 
soil maps if available). Finally, band emissivities can be 
estimated from fractional vegetation cover values pixel 
by pixel. Once band emissivities are known, LST can 
be retrieved. 
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application ranges 1 0-bit quantization 

I5 
IOxA, 

Bi 

10 

5 

0 

5 

-10 

-15 
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TABLE I11 
THE MAXIMUM SENSITIVITY (KELVIN) OF THE H V - D ~ ~ ~ ~ ~ ~ ~ ~  LST ALGORITHM TO THE 
INSTRUMENT NOISE IN WARM ATMOSPHERIC CONDITIONS (294 K 5 Tair 5 300 K) 

~~ ~ 

first emissivity group ( 0 . 9 6 S G I  1.0and - 0 . 0 2 5 S g -  

0 - 0.5 .96-1 .O 0.07 OK 0.16OK 
0.5 - 1 .96-1.0 0.05 OK 0.12OK 
1 - 1 . 5  .96-1 .O 0.04 O K  0.1 7 OK 
1.5 - 2 .96-1 .O 0.04 OK 0.15 OK 
2 - 2.5 .96-1 .O 0.05 OK 0.20 "K 
2.5 - 3 .96-1 .O 0.07 OK 0.23 OK 
3 - 3.5 .96-1 .O 0.08 OK 0.23 OK 

~~~~~ ~~ ~~ 

- G I  0.015) 

0.1 8 OK 0.48 "K 
0.13 OK 0.35 OK 
0.1 2 OK 0.32 OK 
0.12 OK 0.29 O K  

0.1 4 OK 0.33 OK 
0.1 9 OK 0.49 OK 
0.23 OK 0.58 OK 

second emissivity group (0.97SG5 0.95and -0.0251G- 

0 - 0.5 .91-.95 0.08 OK 0.28 OK 
0.5 - 1 .91-.95 0.06 "K 0.40 OK 
1 - 1.5 .91-.95 0.04 OK 0.30 OK 
1.5 - 2 .91-.95 0.04 O K  0.20 "K 
2 - 2.5 .91-.95 0.05 O K  0.21 O K  
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Fig. 6.  The coefficients of the generalized LST algorithm for the higher 
emissivity group in the ranges of Tair 300-305 K, column water vapor 3 . 5 4  
cm, and -2 K 5 T, - T,i, 5 9.5 K. 

C. Validation 
We plan to validate the LST product by field measurements, 

airborne TIMS (thermal imaging multispectral spectrometer) 
and MAS (MODIS airborne simulator) data in different regions 
and seasons over a wide range of the atmospheric condition. 
This will be a multiyear effort. 
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VI. CONCLUSION 

We propose a generalized split-window method for retriev- 
ing land-surface temperature from AVHRR and MODIS data. 
The coefficients of this LST algorithm depend on viewing 
angle. When atmospheric column water vapor increases and 
viewing angle is larger than 45", it is necessary to optimize 
the split-window method by separating the ranges of the atmo- 
spheric column water vapor, lower boundary temperature, and 
surface temperature into tractable subranges. The atmospheric 
lower boundary temperature and (vertical) column water va- 
por values retrieved from HIRS/2 or MODIS atmospheric 
sounding channels can be used to determine the range for 
the optimum coefficients of the split-window method. This 
viewing-angle dependent algorithm not only retrieves LST 
more accurately, but it is also less sensitive than viewing-angle 
independent LST algorithms to the uncertainty in the band 
emissivities of the land-surface in the split-window and to the 
instrument noise. Validation and refinement of this new LST 
algorithm have been planned. The major difficulty in using 
this generalized split-window LST algorithm is how to assign 
appropriate band emissivities for each pixels in real processing. 
It is necessary to enhance the emissivity knowledge base of 
natural terrestrial materials and to develop new algorithms for 
simultaneously retrieving surface emissivities and temperature 
for land covers with variable emissivities. 

VII. COEFFICIENTS AVAILABLE ELECTRONICALLY 

Digital values of the coefficients of the 0,-dependent 
LST algorithm can be requested via electronic mail to 
wan@icess.ucsb.edu. 
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